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General  

 

This was a fairly standard WMA14 paper. There were plenty of very accessible early questions, 

with many of the later questions written to test the best of candidates. It was noted that there were 

many more blank attempts at questions this series, especially in question 7 and 9. Generally the 

standard of algebra was sound. Presentation should, and could be greatly improved, not only in the 

setting out of a proof, but also in making clear all numbers and words in written solutions.  

 

 Report on individual questions 

 

 Question 1 

This proved to be a good introduction to the paper for a prepared candidate, and a pleasing number 

gained full marks. 

The first three marks could be gained for correctly differentiating the given equation. For 

candidates who knew the basic technique, common errors seen included 

• differentiating 
2 d

3 6
d

y
x y x

x
→   

• differentiating 
2 d

4 8
d

y
y

x
→  

• and surprisingly differentiating 
2

4 8 8 8x x+ → +  

Once a candidate had differentiated correctly and achieved the two 
d

d

y

x
terms, many could then go 

on to score all 7 marks. Reasons for dropped marks later on in the solution were as a result of 

arithmetic/ algebraic errors as well as a few cases in which a tangent rather than a normal equation 

was found. Very few marks were lost this series for leaving the answer in an incorrect form, that is 

in this case ,y mx c= +  or omitting the = 0 in the equation 11 14 5 0.x y− − =  

 

Question 2 

 

The second question, on first order differential equations, proved more demanding than the first. 

Many candidates who decided to ''move'' the 4, ended up with an incorrect starting equation of  

2

4 1
d d

4 5
y x

xy
=

+∫ ∫  at some point. Most candidates knew how to integrate at least one of the 

sides although common incorrect solutions  included terms such as 
2

ln( )y  or ( )
3

2
4 5 .x +   The 

majority of prepared candidates could integrate both sides correctly and only made slips on the 

coefficients of the terms. Many could then go on to obtain a constant and change the subject using 

a correct method to find y as a function of x, as requested. It was pleasing to see relatively few 

cases in which an equation of the form 4 5
a

b x c
y
= + + was incorrectly changed to 

1 1

4 5

y

a cb x
= +

+
 



Question 3 

The majority of candidates were able to achieve good marks on parts a and b of this question.  

Part c was found to be very demanding and many struggled to give a complete explanation as to 

why g ( ) 3x′ > . 

 

In part (a) the main methods used to find the constants were from an identity, or else by long 

division. Those who used the right identity usually went on to get all four correct values without 

any real issues. Those using the long division method usually achieved the correct linear quotient, 

scoring 3 marks, but struggled to use the remainder to find values for C and D. The most common 

error with candidates who used this method was to set the numerator of the partial fraction equal to 

6 rather than -6 and then forgetting the negative when the values were put back into the 

expression. Others could not deal with the partial fractions at all.  

 

Part b was completed reasonably well, with the majority using the right method, although some of 

these candidates made sign errors The most common mistake in the method was 

differentiating into logarithmic expressions with 
2

2ln x
x

− → −  and ( )2
2ln 3

3
x

x
→ +

+
 

Most candidates decided to omit part (c). Of those that did make attempts, many stated that  as 

,x →∞  both 

( )2 2

2 2
and 0

3x x

→
+

 so g ( ) 3x′ → meaning g ( ) 3.x′ >  It was important to state that, 

as 0,x >  ( )2 2

3x x+ >  meaning that 

( )2 2

2 2

3 xx

<
+

 and so 
( )2 2

2 2
3 3

3x x
+ − >

+
 

 

Question 4 

 

In part (a) it was surprising to see how many candidates were confused by the 
2

4x  term, with some 

replacing it with 4x  whilst others attempting a more difficult ( ) ( )
1 1

2 21 2 1 2x x− × + . For those who 

did spot the simplicity of the question, most then went on to score all 4 marks in part (a) via the 

intermediate expression  ( )
( ) ( )2 3

2 2

2

1 1 1 1 3
4 4

1 2 2 2 2 21 4
2 2 3!

x x

x

×− × − ×− ×− × −
+ × − + +  

An incorrect final term of 
8

4x−  was seen more times than would have been expected.  

 

In part (b), scores of 0 marks were very common with
1

4
x = being substituted into only one side of  

the expansion. It was important to see  
1

4
x = being substituted into both sides of the expansion to 

obtain 3

4

2 4 6
1 1 1

1 2 2 4
4 4 4

     ≈ − × − −     
     

. In that way the approximation to 3 could easily be 

obtained . 



Question 5 

 

Most candidates who attempted part (a) did so via parametric differentiation, as demanded by the 

question. There were many competent and complete attempts with many reaching a correct answer. 

Common errors in this part included 

• Incorrect attempts to differentiate 28secy t=  

• Solutions of3 5 2 tan t= +  resulting in 
4

t =
π

 rather than
4

t = −
π

  

• Differentiating the Cartesian equation ( )2
2 5 8y x= − +  

In part (b), many knew that to eliminate the parameter, the equation 
2 2

1 tan sect t+ =  was required. 

Unfortunately even though many achieved a correct intermediate answer of 
( )2

5
1

4 8

x y−
+ = , a 

sizeable minority of these could not proceed to ( )2
2 5 8y x= − +  

Part (c)'s focus was the range of the function, and a graph was provided to help. Common incorrect 

solutions followed attempts to substitute either end of the domain in the parametric equation for y. 

This usually resulted in only one of the two marks being scored, with the minimum value missing, 

a value that could have easily been obtained from the 8 of ( )2
2 5 8y x= − + .    

 

Question 6 

 

This was a question that was very much centre dependent. There were lots of very well constructed 

and fully correct solutions yet an equal number that did not know where to start, 

Of those who knew ''integration via substitution'', most scored the first mark for  
d

4cos
d

u
x

x
=  

Many then went on to use the substitution sin 2 2sin cosx x x= , form an integral in just u before 

simplifying and integrating. The application of the changed limits of 5 and 7 was frequently scored 

by candidates who had failed to integrate correctly. 

Common errors witnessed, that usually resulted in the loss of most marks were 

• candidates who changed sin 2x  to 
1 3 3

sin 2 sin 2
4 4

u u−
    − −  =           

 

• candidates who ignored the dx and simply wrote it as du 

 

Some very good candidates missed out on the final mark for not writing 
12 7

2ln
35 5

− + in the form 

required by the question. 

 

 

 

 

 



Question 7 

 

This was another question where many candidates had no idea of how or where to begin. There 

were many blank responses as well as an equal number that scored no marks at all. Those that did 

manage to score marks tended to score most of them. It is worth repeating that it is good practice in 

a geometric question to sketch out a diagram.  

 

 

 

 

 

 

 

 

In part (a) most incorrect responses attempted to set  

4 4 4

2 3 . 3 0

3 5 5

− −   
   − − =      − +   

λ
λ
λ

    rather than   

4

. 3 0

5

AX

− 
 − = 
 
 


 

This immediately resulted in 0 marks for (a)(i). Most candidates who attempted the latter scored 4 

or 5 marks. 

 

Candidates who got an incorrect X could still pick up method marks in (a)(ii) and (b) but many 

gave up after part (a). Other methods were seen in part (a) including minimising the length of AX 

using either differentiation or by completing the square. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Question 8 

 

Part (a) was straightforward bookwork for a prepared candidate. The application of ''integration by 

parts'' was well known and applied correctly by a great number of candidates. Surprisingly, 

perhaps, there were many other attempts that were blank, or showed no knowledge of the topic 

whatsoever.  

 

Part (b) was very demanding and a very good discriminator at the high grades. Candidates could 

use their answer from part (a) after another application of ''parts''. Unfortunately many candidates 

assumed that ( )2

ln x  was identical to 2ln x   and failed to score. There were some excellent well 

formed solutions however, showing skill in both calculus and algebra.    

 

Question 9 

 

This proved to be yet another demanding question in this series. It was strange to see the number of 

candidates who did either part (a) or (b) successfully yet made no attempt at the other part. There 

were also many blank responses, probably due to a lack of familiarity of this type of question due 

to lockdowns.  

 

Part (a) required candidates to write the information given in the question in terms of rates of 

change. There were two relatively straight-forward  marks for writing down 
d

16
d

V

h
= π  and 

d
0.6 0.15

d

V
h

t
= π − π  which could then be combined and simplified to show the given statement. 

Errors included 

• Using the volume of the cylinder as 
24

3
V r h= π  

• Using either 
d

0.6
d

V

t
= π  or 

d
0.15

d

V
h

t
=− π  

Part (b) required candidates to solve the given differential equation using the boundary condition 

0, 0.5t h= = to find the time before the height reached 3.5m. As with other questions there were 

many well constructed solutions from well prepared and able candidates. Amongst reasons for loss 

of marks for candidates who were able to make progress in this question were 

• integrating 
1

320
 to ln(320 )t   

• Not using the boundary condition 0, 0.5t h= = to find a value for ''c'' and just 

using 
1 1

ln(12 3 )
3 320

h t− − = with h = 3.5 to find t 

• Giving the units for the answer 208 as seconds rather than minutes 

 

 



Question 10 

 

The first part of this question, on proof by contradiction, included a partially completed attempt at 

showing that if n3 is even , then n is even. It was there to help candidates solve part (b), by not only 

giving them the structure of a proof, but also the key steps in helping them solve it. 

 

A great many responses to part (a) did correctly factorise the expression, but few made a comment 

to state that it was odd.  Both of these aspects were required to show the contradiction.  

 

Responses to part (b) were mixed with many not understanding the meaning of a rational or 

irrational number. For those who did make a start and stated the contradiction 

''There exists integers a and b such that  3 2
a

b
=  '' 

many went on to gain two or three marks out of 5. Most of these forgot, however, to add a 

statement that  
a

b
 was fully simplified which would mean that the last mark in the question could 

not be awarded. It is really important in a proof to include all necessary steps, and in this one it was 

common to see  

''

3
3 3

3

3
2 2 2

a a
a b

b b
= ⇒ = ⇒ = '' followed by ''hence a is even'' 

rather than  

''

3
3 3

3

3
2 2 2

a a
a b

b b
= ⇒ = ⇒ = '' followed by ''hence a3 is even so  a is even'' (using part a) 

The final part of the proof could then be reached by setting 2a m= , before substituting this into 
3 3

2a b=  to give 

'' ( )3 33 3
2 2 4m b b m= ⇒ =  followed by the same deduction that b3 is even so  b is even'' 

The order of the statements was crucial to scoring full marks, as was the fact that a and b had no 

common factors in the initial statement. As a result fully correct proofs were rare and only awarded 

to the best of candidates. 
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